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This  article  examines  the  problem  of  estimating  the aggregate  load  imposed  on  the  power  grid  by  the
battery  health-conscious  charging  of  plug-in  hybrid  electric  vehicles  (PHEVs).  The  article  begins  by  gen-
erating  a set  of  representative  daily  trips  using  (i) the  National  Household  Travel  Survey  (NHTS)  and  (ii) a
Markov chain  model  of  both  federal  and naturalistic  drive  cycles.  A multi-objective  optimizer  then  uses
each of  these  trips,  together  with  PHEV  powertrain  and  battery  degradation  models,  to  optimize  both
PHEV daily  energy  cost  and  battery  degradation.  The  optimizer  achieves  this  by varying  (i) the  amounts
of  charge  obtained  from  the  grid  by  each  PHEV,  and  (ii)  the timing  of  this  charging.  The  article  finally
ithium-ion battery degradation computes  aggregate  PHEV  power  demand  by  accumulating  the  charge  patterns  optimized  for  individual
PHEV  trips.  The  results  of  this  aggregation  process  show  a peak  PHEV  load  in the  early  morning  (between
5.00  and  6.00  a.m.),  with  approximately  half  of  all  PHEVs  charging  simultaneously.  The  ability  to charge  at
work  introduces  smaller  additional  peaks  in  the  aggregate  load  pattern.  The  article  concludes  by explor-
ing the  sensitivity  of these  results  to  the  relative  weighting  of  the  two  optimization  objectives  (energy

batte
cost  and battery  health),  

. Introduction

This article examines the problem of estimating the total load
mposed on the power grid by an aggregate set of plug-in hybrid
lectric vehicles (PHEVs).1 Such PHEV load estimation can be par-
icularly important for at least two reasons. First, an understanding
f PHEV-induced grid load may  be valuable for scheduling grid gen-
ration dispatch to accommodate this load [1].  Second, in the longer
erm, predicting PHEV power demand may  be necessary in order
or the electric utility infrastructure to expand accordingly.

The literature already provides several comprehensive studies
xamining the impact of vehicle electrification on overall grid load
2–4], the grid’s ability to accommodate intermittent renewable
nergy [5,6], grid load control [1,7], and greenhouse gas emissions
8–10]. All these studies treat PHEVs as intermediaries between the

ransportation and power infrastructures, with the ability to store
nergy electrochemically when available for later use when needed
or either propulsion or grid services such as load leveling, etc. The

∗ Corresponding author. Tel.: +1 864 650 7539; fax: +1 814 865 7222.
E-mail address: sub34@psu.edu (S. Bashash).

1 A preliminary version of the results included in this article was  presented at the
010 ASME Dynamic Systems and Control Conference [28]. The authors gratefully
cknowledge the copyright release granted by ASME for the material presented in
hat effort.

378-7753/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2011.06.025
ry  size,  and  electricity  price.
© 2011 Elsevier B.V. All rights reserved.

fact that the electrochemical batteries used for such storage are
currently expensive, and degrade with usage, creates impetus for
research on battery health degradation within the V2G framework
[11].

Recent research by the authors explored the interplay between
battery health and V2G integration by optimizing the daily charge
pattern of a single PHEV to minimize both its energy consump-
tion cost and battery degradation [12]. This research showed that
the optimal charge pattern for a PHEV depends significantly on
the interplay between trip length, trip timing, and electricity pric-
ing. The research modeled battery health degradation using an
electrochemistry-based model of lithium-ion batteries [13–15].
This model’s parameters were optimized to fit both short-term
experimental battery cycling data obtained by the authors as well
as longer-term aging data from manufacturer tests [12]. The incor-
poration of a battery health degradation phenomenon (namely,
solid electrolyte interphase, or SEI, layer growth) as a charge pat-
tern optimization objective furnished last-minute charging patterns
where PHEVs demanded grid electricity immediately prior to trip
inception. This contrasted significantly with the more traditional
late afternoon and overnight charging patterns examined in earlier
literature.
This article extends the above research by optimizing the charge
pattern for a fleet of PHEVs following a representative set of daily
driving cycles. We  use a mid-size power-split PHEV model to evalu-
ate the energy costs associated with these drive cycles, and use the

dx.doi.org/10.1016/j.jpowsour.2011.06.025
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:sub34@psu.edu
dx.doi.org/10.1016/j.jpowsour.2011.06.025
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bove mentioned electrochemistry-based battery model to exam-
ne PHEV battery degradation. The drive cycle start times, end
imes, and travel distances are generated based on travel data
rovided by the National Household Travel Survey (NHTS). Further-
ore, the actual velocity-versus-time trajectory for each drive cycle

s generated from a Markov chain model fitted to standard and nat-
ralistic drive cycles. We  obtain aggregate PHEV power demand by
ccumulating the individual optimal PHEV charge patterns for the
bove cycles. The results of this aggregation show that aggregate
HEV load peaks early in the morning, with nearly half of all PHEVs
harging simultaneously. Moreover, the ability to charge at work
an add further, smaller peaks to this aggregate load. The occur-
ence of such secondary peaks depends significantly on whether
lectricity price is flat throughout the day or varies between on-
eak and off-peak hours.

The remainder of this article is organized as follows: Section
 presents a method for generating a set of representative syn-
hetic trips for PHEVs. Section 3 introduces the PHEV model and
he lithium-ion battery model, and formulates the charge pattern
ptimization problem. Section 4 computes aggregate PHEV power
emand, and Section 5 summarizes the article’s main findings.

. Synthetic trip generation

This section presents a set of representative synthetic trips, or
rive cycles, for a population of PHEVs. We  generate these trips
sing a three-step process: First, we re-sample a set of trip start
imes and trip lengths from the statistical distributions of these
ariables, which we obtain from the NHTS data repository. Second,
e use a Markov chain model previously fitted to a set of both

ederal and real-world drive cycles to generate profiles of vehicle
elocity versus time. Third, we combine the re-sampled NHTS data
ith the velocity profiles produced by the Markov chain to obtain

 set of representative daily trips for PHEVs.

.1. Travel data

NHTS provides a large pool of real-world driving data to assist
ransportation planners and policy makers in understanding travel
atterns in the United States [16]. These data include the tim-

ng, the lengths, and the purposes of various daily trips taken by
housands of different drivers. NHTS groups the purposes of these
rips into categories such as going to work, returning from work,
amily/personal business, school/church, etc. This work focuses on
HTS travel patterns consisting of only two work-related trips per
ay, i.e., going to and returning from work. One of the objectives
f this effort is to examine the extent to which PHEVs benefit from
dditional charging at work, versus charging at home only.

From the 2001 NHTS records corresponding to nearly 150,000
ifferent drivers, we choose the statistics of 8500 drivers who com-
uted between home and work using their personal vehicles (as

ompared to, say, rail transportation). Fig. 1 shows the histograms
f the first and second trip start times and the trip lengths (i.e.,
ravel distances), noting that the distribution of the first trip length
home to work) and second trip length (work to home) are nearly
dentical. The peak values of the departure times for the first and
econd trips are between 6:00 and 7:00 a.m., and between 5:00 and
:00 p.m., respectively. Moreover, the peak value of the trip length
istribution falls in the range of 5–10 miles.

Since the size of the selected data is too large for the PHEV charge
attern optimization study, we re-sample the NHTS data to gen-

rate a smaller set of representative trips from the distributions
hown in Fig. 1. To perform this re-sampling, we begin by com-
uting the statistical correlations between selected variables from
he NHTS data, as shown in Table 1. The results show that the first
Fig. 1. Histograms of (a) trip start time, and (b) trip length for the two-way work
trips obtained from about 8500 drivers data in the NHTS dataset [16].

and second trips are very strongly correlated in length (correla-
tion coefficient of 0.99), which is consistent with this study’s focus
on two-part daily commutes from home to work and back. The
results also show a strong correlation between the first and second
trip start times (correlation coefficient of 0.68). Finally, the correla-
tions between trip start times and trip lengths are relatively weak.
Therefore, we  re-sample the NHTS data in a manner that maximizes
the correlation between trip start times, but minimizes the corre-
lation between trip lengths and trip start times. The latter goal is
accomplished using a minimum-correlation Latin hypercube selec-
tion procedure [17]. Table 2 presents the timing and lengths of 20
trips re-sampled from the NHTS distribution using this process, and
used throughout the remainder of this article.

2.2. Velocity data

While Table 2 gives the overall characteristics of the re-sampled
trips used in this study, it does not provide instantaneous profiles
of vehicle velocity versus time for each of these trips. To gener-
ate a set of representative velocity profiles, we use a Markov chain
model capturing vehicle drive cycle characteristics [18,19]. The
Markov chain provides a statistical representation of the evolution
of vehicle velocity versus time, in the form of a transition matrix
relating acceleration at every time instant to previous velocities and
accelerations. The transition probabilities of this Markov chain are
identified from a set of vehicle certification cycles (FTP-72, US06,
HWFET) and real-world micro-trips (WVUCITY, WVUSUB, WVUIN-
TER) from the ADVISOR database [20] via maximum likelihood
estimation. We  simulate this Markov chain model for the different
trip lengths in Table 2, thereby obtaining a velocity-versus-time
profile for each trip.

Fig. 2 depicts a sample velocity profile generated for the first
part of Trip #10 of Table 2, starting at 7:01 a.m. with the lengths
of 28.49 miles. It is worthwhile to note that the Markov chain

model generates velocity profiles stochastically, resulting in differ-
ent trip durations for the same trip length. However, since the total
energy consumption of a PHEV is tightly related to its trip length,
the Markov chain model can be reasonably used for synthetic trip
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Table  1
Correlation coefficients between the variables selected from the NHTS dataset.

First trip start time First trip length Second trip start time Second trip length

First trip start time 1.00 −0.17 0.68 −0.16
First  trip length −0.17 1.00 −0.01 0.99
Second trip start time 0.68 −0.01 1.00 −0.01
Second trip length −0.16 0.99 −0.01 1.00

Table 2
Schedule and length of 20 re-sampled trips from the NHTS distributions.

Trip # First trip start time Second trip start time Trips length (mile) Trip # First trip start time Second trip start time Trips length (mile)

1 4:35 12:07 11.47 11 7:14 17:00 14.53
2  5:17 14:13 10.00 12 7:27 17:03 15.80
3 5:36 14:57 7.83 13 7:32 17:15 18.36
4 5:57 15:14 24.36 14 7:47 17:22 3.09
5 6:08  15:19 1.26 15 8:01 18:00 5.03
6  6:24 15:49 9.02 16 8:24 18:18 53.28
7 6:30 16:01 6.00 17 9:03 19:10 34.94
8  6:40 16:15 6.90 

9  6:55 16:18 20.76 

10  7:01 16:40 28.49 
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to-work) of Trip #10 (shown in Fig. 2) are plotted against the initial
battery SOC. Fuel and electricity prices are chosen based on the
ig. 2. A sample velocity profile generated for the first part of Trip #10 of Table 2,
ith trip length of 28.49 miles starting at 7:01 a.m.

evelopment. Fig. 3 depicts all of the 20 representative drive cycles
enerated through the Markov chain model.

. PHEV charge pattern optimization

This section examines the problem of optimizing the timing and
mount of PHEV charging for each of the above 20 drive cycles.
e perform this optimization using a previously developed multi-

bjective charge pattern optimizer described in more detail in Ref.

12]. The optimization objective is to simultaneously minimize
i) the total energy cost (fuel plus electricity) and (ii) the total
attery degradation for each of the drive cycles. The first objec-
ive is calculated using a previously developed stochastic optimal

ig. 3. Representative dive cycles generated using the NHTS data distributions and
he  Markov chain model.
18 10:33 20:31 12.50
19 13:18 22:10 2.17
20 15:36 24:31 4.29

PHEV power management strategy [19,21],  whereas the second
objective is evaluated through an electrochemistry-based model of
anode-side resistive film formation in lithium-ion batteries [13,14].
Because these two  objectives are conflicting, we trade them off
using a non-dominated sorting genetic algorithm, NSGA-II [22].
This section briefly reviews the PHEV model, the battery model,
and their use in the PHEV charge pattern optimization problem.

3.1. PHEV model with optimal power management

The PHEV model used in this effort is based on a power-split
mid-size sedan vehicle, similar in configuration, dynamics, and
design to the 2002 Toyota Prius (see Fig. 4). The supervisory power
management algorithm, which determines the optimal split of
engine and battery power, is developed using stochastic dynamic
programming (SDP) techniques. The details of the model and the
optimal power management algorithm can be found in Ref. [19].
Here, we present a simulation study of the model to provide an
insight into how battery state-of-charge (SOC) at the beginning of
a trip can affect the PHEV fuel and overall energy consumption costs
over the trip.

The results of this simulation are shown in Fig. 5, where the
final values of energy consumption costs for the first part (home-
average rates of the year 2008 in the United States. From Fig. 5, we
see that increasing the initial battery SOC increases trip electricity

Fig. 4. PHEV model components, supervisory controller, and signal flow.
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total energy cost and battery longevity. We  adopt the optimization
problem formulation developed in Ref. [12], where the optimiza-
tion variables are the time at which each PHEV charging event
begins, and the amount by which the PHEV’s SOC changes over
ig. 5. Fuel, electricity, and total energy costs versus initial battery SOC for the first
art  of Trip #10.

ost, but decreases both trip fuel cost and total energy cost. These
rends cease above 80% initial SOC because the trip does not require

ore battery electricity beyond that point. Thus, we  observe that
o minimize total energy cost for a given trip, one must add enough
harge to the battery, prior to that trip, to meet the trip’s electrical
nergy needs. Our next goal is to use a fundamental lithium-ion bat-
ery model to understand the impact of such a charging approach
n battery degradation.

.2. Lithium-ion battery model

This article adopts a first-principles lithium-ion battery model
rom the electrochemistry literature [13,14]. This model simulates
olid electrolyte interphase (SEI) growth, and treats it as a key con-
ributor to battery capacity fade during energy storage and cycling.
he model uses a set of Butler–Volmer electrochemical reaction
quations and lithium-ion diffusion sub-models to build a detailed
epresentation of the dynamics of lithium-ion batteries. Degrada-
ion, in this model, is represented by a side intercalation reaction
ccurring in the negative battery electrode (anode), and causing
he irreversible loss of lithium ions to a growing solid electrolyte
nterphase film.

Let Jsd represents the side reaction intercalation current density,
nd ıfilm represents the resistive film thickness. Then the rate of
ncrease of the resistive film is governed by a first-order differential
quation given by:

∂ıfilm(z, t)
∂t

= −k1Jsd(z, t) (1)

here z represents the coordinate axis passing through the battery
lectrodes and separator, and k1 is a constant coefficient contain-
ng a set battery parameters such as the molecular weight and
ensity of the side reaction product. As the resistive film devel-
ps on the negative electrode, the battery SEI resistivity increases
roportionally, as follows:

SEI(z, t) = RSEI(z, t0) + ıfilm(z, t)
Kp

(2)

here RSEI (z, t0) denotes the initial SEI resistivity, and Kp represents
he conductivity of the side reaction product.

The growth of the battery SEI resistivity provides a measure
f battery health degradation for the multiobjective optimiza-
ion problem examined in this effort. To quantify this resistivity
ncrease, we simulate the full battery model and compute the side
eaction intercalation current density, Jsd, while the battery is being
harged, discharged, or kept steady in the storage mode. This arti-

le omits the full description of the battery model for brevity, but
ncourages interested readers to study Refs. [13,14] for the details
f the model, and Ref. [15] for a reduced-order version of the model
dopted in this article for computational efficacy.
Fig. 6. Battery degradation map.

To illustrate the main features of the above degradation model,
we present a static response surface map  relating the rate of bat-
tery resistivity growth to battery SOC and charge/discharge rate
(see Fig. 6). This map  is obtained by simulating the battery model
for an SOC range of 10–90% and charging rates of −2C to +2C, with
the negative sign indicating discharge. The parameters of the model
are selected based on the results of an experimental system identifi-
cation process on a set of lithium-ion battery cells with an LiFePO4
cathode chemistry [A123], in a 26650 format [23]. The details of
the experimental setup and the system identification process can
be found in Ref. [12].

We can see from Fig. 6 that at the low and high SOC  ends the
battery tends to degrade faster, especially when it is subject to
high-rate charging. Moreover, battery degradation takes place at
a slower pace during charge depletion. To examine battery capac-
ity fade during floating storage (i.e., when SOC is constant), we plot
a sub-trajectory of the map  corresponding to the charge rate of
zero, as shown in Fig. 7. This sub-trajectory shows that the bat-
tery degradation rate is higher at higher SOC levels. Thus, storage
at higher battery charge levels results in faster degradation. Similar
trends have been obtained from the empirical analyses of different
lithium-ion battery chemistries [24,25]. A key implication of this
observation is that there is a non-trivial tradeoff between energy
cost and battery health in the context of PHEV charging, since a
higher battery SOC immediately prior to trip inception reduces
trip energy cost but increases instantaneous battery degradation.
Our next goal is to use multi-objective optimization to address this
non-trivial tradeoff.

3.3. PHEV charge pattern optimization

In this section, we  optimize the charge patterns of PHEVs for
Fig. 7. Battery degradation trend in the energy storage mode.
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To select a representative charge pattern from a Pareto front,
we normalize the objective functions with respect to their mean
ig. 8. Charge pattern optimization of the PHEV model with a 12 kWh  battery for
rive cycle #10.

he event. The number of charging events depends on whether
he PHEVs are able to charge at home only (1 event per day), or
ome and work (2 events per day). The constant-current/constant-
oltage (CCCV) charging strategy is adopted, and an SOC cap of 90%
s imposed.

For a drive cycle with N separate trips the optimization objective
s to:

Minimize
x

{(
f1(x) =

∫
24 h

Jfuel(x, t)dt +
∫

24 h

Jelec(x, t)dt

)
and

(
f2(x

x = [x1, x2, x3, . . . , x2N]
x2i−1, i = 1, 2, . . . , N (i.e., x1, x3, . . . x2N−1) : Start time of cha
x2i, i = 1, 2, . . . , N (i.e., x2, x4, . . . x2N) : Charge amount for ri

here Jfuel and Jelec are the instantaneous fuel and electricity dol-
ar costs per unit time, R̄24 h

film is the final value of the anode-side
esistivity growth at the end of the 24-h simulation, and x is the
ector of optimization variables defining the charge patterns. We
et the charging power of PHEVs to a constant rate of 2 kW,  which
orresponds to a typical residential charger. Finally, the lower and
pper bounds of the variables associated with the charge times are
et such that the entire dwell time between the trips can potentially
e used for charging.

Two different electricity pricing policies are adopted for the
ptimization studies in the article. First, we use the DTE energy
ricing policy for electric vehicles in the State of Michigan within
he period of June to September 2009 [26]. This policy consists
f two different rates: During the on-peak hours (10.00 a.m. until
.00 p.m.) the electricity rate is 0.099 USD kWh−1, while during the
ff-peak hours this rate reduces to 0.035 USD kWh−1. Second, we
xamine a flat electricity price of 0.117 USD kWh−1, corresponding
o the average United States residential electricity price for the year
009 [27].

To account for charging location, we consider two PHEV charg-
ng scenarios: (i) charging at home only, and (ii) charging at home
nd at work. Therefore for the first scenario, where there is only one
harging event, the optimization problem consists of two variables,
hereas in the second scenario the optimization problem includes

our variables.
The method of NSGA-II [22] is used to carry out the multi-

bjective optimization tasks developed in this article. Fig. 8 depicts
n example of the optimal solutions obtained for the PHEV model
ith a battery size of 12 kWh, following drive cycle #10, and adopt-

ng the second charging scenario (i.e., charging at home and at
ork). These solutions constitute a Pareto front: a set of charge pat-

erns that represents the best attainable combinations of energy
ost versus battery health. Ideally, no point on this Pareto front

an be “dominated”, meaning that there cannot exist a charge pat-
ern that improves upon the Pareto front in terms of both energy
ost and battery longevity. We  obtained this Pareto front after
unning NSGA-II for 50 generations and 60 population members.
ources 196 (2011) 8747– 8754 8751

24 h
film (x)

)}

 for trip i
(up to 90% SOC)

(3)

Fig. 9 shows charge patterns corresponding to two sample solutions
from this Pareto front. Two  main observations can be made from
these charge patterns: First, both charging tasks take place dur-
ing off-peak hours. Second, the charge pattern before the first trip
immediately precedes the trip’s onset. This keeps battery degrada-
tion caused by energy storage at high SOC relatively small since the
PHEV discharges the battery immediately after charging it.

4. PHEV power demand computation

Section 3 of this article presented an approach for optimizing
the PHEV charge pattern corresponding to a specific daily trip,
such that PHEV energy cost and battery degradation are minimized.
This section computes the aggregate demand for multiple PHEV
trips (specifically, for the 20 trips from Section 2) by choosing
and accumulating individual charge patterns from the individ-
ual Pareto fronts corresponding to each PHEV trip. This process
involves selecting a single representative charge pattern from each
Pareto front, which is carried out through a secondary optimization
process described next.

4.1. Selection of charge patterns from the Pareto fronts
Fig. 9. Two  sample charge patterns from the optimal Pareto front.
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alues in the Pareto front, and then minimize their weighted sum
ver the existing solutions in the Pareto front:

inimize
x Pareto

f = f1n + ˛f2n (4)

here f1n and f2n are the normalized battery degradation and
nergy cost objectives, respectively, and  ̨ is the weighting
oefficient. The above optimization problem is a single-variable
ingle-objective optimization problem over a finite set, which can
e easily solved by choosing a value for  ̨ and evaluating the entire
areto set for the above objective function. A large value of  ̨ puts
ore emphasis on the second objective (energy cost) compared to

he first objective (battery degradation), and vice versa. For exam-
le, from the charge patterns shown in Fig. 8, Sol. #1 corresponds
o  ̨ value of 0.1, whereas Sol. #2 corresponds to  ̨ value of 0.3 or
igher. Most of the results presented in the following section use

 value of 1 for ˛, thereby placing equal emphasis on the two opti-
ization objectives. However, we also examine the case of using

ifferent values of ˛, to show how the tradeoff between the two
ptimization objectives can affect the aggregate PHEV load pattern.

.2. Aggregate PHEV load patterns

We obtain the aggregate PHEV load pattern by choosing a bat-
ery size, a charging scenario (i.e., charging at home versus both
ork and home), an electricity pricing policy, and a value for the
eighting coefficient ˛, and then optimizing and accumulating the

ndividual charge patterns for all the 20 trips studied in this article.
herefore, different load patterns can be generated for different
elections of the above parameters. In this section, we  first dis-
uss the PHEV load pattern obtained for a nominal selection of the
bove parameters, and then we examine the effect of varying each
arameter relative to its nominal value.

Fig. 10 depicts the battery health-conscious aggregate load pat-

ern for a population of PHEVs with 12 kWh  batteries, allowed to
harge both at home and at work, with on/off-peak electricity pric-
ng, for a unity value of the weighting parameter ˛. The most salient
eatures of this load pattern can be summarized as follows:

ig. 11. The effects of the weighting parameter, ˛, on the aggregate PHEV power demand (
ricing).
Fig. 10. Aggregate power demand for PHEVs with 12 kWh  battery for  ̨ = 1, home
and  work charging, and stepped on-peak/off-peak electricity pricing.

• The first PHEV peak load occurs between 5:00 and 6:00 a.m. with
about 50% of the PHEVs simultaneously receiving electricity from
the grid (note that this peak load corresponds to approximately
1 kW per PHEV, while the charging rate of each PHEV is 2 kW).

• There is a secondary peak around 9:00 a.m. with about 60% of
PHEVs connected to the grid. This peak represents a “rush” by
PHEVs to charge their batteries during off-peak hours, immedi-
ately after arriving at work.

• There is sudden drop in the load pattern at 10:00 a.m., which
corresponds to the rise of electricity price to the on-peak rate.

• Except for the time period from 2:00 a.m. to 10:00 a.m., the num-
ber of PHEVs charging from grid remains below 10% of the total
PHEV population.

These observations correspond to the specific choices of opti-
mization parameters listed at the beginning of this section. Next,
we vary these optimization parameters individually and examine
the effect of such variation on the aggregate PHEV load pattern.
4.2.1. Effects of optimization tradeoff
Fig. 11 shows the aggregate PHEV load patterns for four different

values of the objective weighting parameter,  ̨ = 0.01, 0.1, 10, and

12 kWh  battery, home and work charging, and stepped on-peak/off-peak electricity
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Table  3
Average electricity demand, average energy cost, and average battery SEI resistivity growth for PHEVs with different parameter sets.

Parameter set Avg. electric energy
per PHEV (kWh)

Avg. energy cost
per PHEV (USD)

Avg. SEI res.
growth (m� m2)

12 kWh,  ̨ = 1, H W−1 (on/off-peak pricing) 6.38 0.78 1.03
12  kWh,  ̨ = 0.01, H W−1 (on/off-peak pricing) 1.10 1.37 1.00
12  kWh,  ̨ = 0.1, H W−1 (on/off-peak pricing) 5.90 0.83 1.02
12  kWh,  ̨ = 10, H W−1 (on/off-peak pricing) 6.38 0.78 1.03
12  kWh,  ̨ = 100, H W−1 (on/off-peak pricing) 6.38 0.78 1.03
8  kWh,  ̨ = 1, H W−1 (on/off-peak pricing) 5.85 0.83 1.04
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16  kWh,  ̨ = 1, H W (on/off-peak pricing) 6.46 

12  kWh,  ̨ = 1, H only (on/off-peak pricing) 5.17 

12  kWh,  ̨ = 1, H W−1 (flat pricing) 6.15 

00 (note that case of  ̨ = 1 has already been examined). Increasing
he value of  ̨ favors the energy cost objective. This causes PHEVs
o demand more grid electricity, since it is cheaper for propulsion
han fuel. The overall effect is an increase in aggregate electricity
emand together with a drop in total PHEV energy cost and a slight

ncrease in battery health degradation. For example, Increasing ˛
rom 0.01 to 0.1 causes PHEVs to demand 436% more electricity
rom the grid, reduces their total daily energy cost by 39%, and
ncreases their overall battery degradation by approximately 2%
see Table 3). Increasing  ̨ further from 0.1 to 1 increases total elec-
ricity demand by 18% more, reduces total energy cost by 6% more,
hile increasing battery degradation by approximately 1% more.

here is almost no change in the load profile if we increase  ̨ further.

.2.2. Effects of battery size
Fig. 12 shows the aggregate PHEV load patterns for 8 kWh  and

6 kWh  batteries. The rest of the parameters are kept the same
s the initial/nominal values. We  see that the shape of the overall
HEV load pattern does not change qualitatively with battery size.
he main quantitative consequence of doubling battery size from
 kWh  to 16 kWh  is a 6% reduction in consumer energy cost, and
 simultaneous 2% improvement in battery health (see Table 3).
hese improvements can be explained as follows: larger batteries
ake it possible to drive further on electricity (which is cheaper),

ig. 12. The effects of battery size on the aggregate PHEV power demand (  ̨ = 1,
ome and work charging, and stepped on-peak/off-peak electricity pricing).
0.78 1.02
0.88 1.03
1.27 1.01

with less of a need to push the batteries to high SOC values (which
can cause induce more degradation). The benefits associated with
larger batteries are more pronounced if PHEVs are unable to charge
at work (i.e., if they charge at home only). In that case, increasing
battery size from 8 kWh  to 16 kWh  corresponds to a 22% reduction
in total energy cost.

4.2.3. Effect of charging location
Fig. 13(a) depicts the aggregate PHEV load pattern for the initial

parameter set when only charging at home is available, as opposed
to charging at both home and work. There is a single peak load
in the morning (around 5 a.m.) with about 55% of PHEVs charging
from the grid. The power demand drops at 10 a.m. but with a much
smoother transition compared to the case where charging at work
is also available. The ability to charge at work essentially allows
PHEVs to obtain more electricity from the grid over the course of
the day. This reduces the average consumer energy cost by 19%
for 8 kWh  batteries, and 1% for 16 kWh  batteries. Further examina-
tion of Table 3 shows that the ability to charge at work does not
affect battery degradation significantly. This is a consequence of
two competing effects. On the one hand, charging at work allows

PHEVs to reduce the charge added to their batteries before the
first trip, thereby reducing battery degradation caused by energy
storage between trips. On the other hand, PHEVs charge more on
average when allowed to charge at both work and home, which

Fig. 13. Aggregate PHEV power demand for (a) home charging only and (b) home
and  work charging with flat electricity pricing (12 kWh  battery, and  ̨ = 1).
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mplifies the degradation because of higher battery usage. These
wo effects largely nullify each other, resulting in the small impact
f charging location on battery degradation.

.2.4. Effects of electricity pricing
The presence of a large jump in the electricity price during the

ff-peak to on-peak transition moment creates load congestion
efore the transition time. To understand how much this jump
ffects the results shown so far, we compute the optimal charge
atterns for the flat electricity pricing policy described in Section
.3. Fig. 13(b) shows the corresponding aggregate load profile for
he initial parameter set, i.e., 12 kWh  battery, home and work charg-
ng, and  ̨ = 1. Flat electricity pricing results in two  nearly identical
oad patterns, one taking place in the morning and one in the after-
oon. Gone are some of the salient features of Fig. 10 introduced by
he onset of on-peak pricing, such as the secondary aggregate load
eak shortly before 10:00 a.m. The sheer degree to which electricity
ricing can change the shape of the optimal PHEV charge patterns
nderscores the viability of pricing as a tool for shaping aggregate
HEV power demand.

. Summary and conclusions

This article examined the problem of predicting the aggre-
ate grid load imposed by the battery health-conscious charging
f plug-in hybrid electric vehicles (PHEVs). The article adopted a
epresentative PHEV powertrain model developed previously by
he authors to compute the on-road PHEV energy consumption
osts. The article then used an electrochemistry-based lithium-ion
attery model to predict the PHEV’s battery health degradation
ver the course of a full daily drive cycle. Twenty representative
ets of daily trip start times and trip lengths were re-sampled
rom the statistics of the NHTS database. For each of these sam-
le trips, on-road vehicle velocity was generated as a function
f time using a Markov chain model trained on both federal
nd naturalistic driving data. For each of the resulting daily trip
escriptions, we used NSGA-II to obtain a Pareto set of PHEV
harge patterns optimizing both total PHEV energy cost and
attery health. Aggregating the resulting PHEV charge patterns
urnished a prediction of the battery health-conscious PHEV grid
oad.

Unlike the PHEV-induced grid loads traditionally studied in
he literature, our results show a peak load early in the morning
between 5.00 a.m. and 6.00 a.m.), immediately preceding depar-
ure to work. Moreover, if charging at work is provided, there are
dditional peaks immediately preceding the onset of on-peak elec-
ricity pricing, and possibly in the afternoon. During the peak load
t 2 kW charge rate, approximately 50–60% of the PHEV popula-
ion simultaneously receives electricity from the grid. The results
btained in this article are based on a particular PHEV configu-

ation, a set of specific trips (i.e., work-related trips), a specific
odel of battery health degradation, and finally, the assumption

hat consumers will adopt the developed battery health-conscious
harging policies. However, the methods proposed herein can be

[

[

ources 196 (2011) 8747– 8754

used to analyze PHEV grid loads under other optimization scenar-
ios as well. Key factors for consideration in future PHEV grid load
studies include real-time load management and full vehicle-to-grid
(V2G) integration with bidirectional power flow.
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